Cauchy's 2nd Integral Theorem:

This theorem states that if a function $\varphi(z) = \frac{f(z)}{z-z_0}$ is analytic at every point in a region except at a point $z = z_0$ in the region R as enclosed by a closed curve C then

$$f(z_{0}) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_{0}} dz \text{ i.e. } \int_{C} \frac{f(z)}{z - z_{0}} dz = 2\pi i. f(z_{0})$$

Because here for this function $\phi(z) = \frac{f(z)}{z-z_0}$, it has singular point at $z = z_0$, we can now isolate this point $z = z_0$ by an infinitesimally small circle C_1 of radius r and centre at the point $z = z_0$ where $r \to 0$.

If we now connect these two close contours C and C₁by a very narrow channel as shown in figure where $a \rightarrow b$ and $c \rightarrow d$ then we definitely get a close region as enclosed by the close contour C₀ where

 $C_o = C(anti - Clock) + ac + C_1(Clockwise) + db$

Since $\varphi(z)$ is analytic at each and every point in that close region as enclosed by the close contour C_0 we have from Cauchy's 1st Integral theorem $\int_{\Gamma} \varphi(z) dz = 0$

But from figure

$$\varphi(z)dz = \int_{C_{1}} \frac{f(z)}{z-z_{0}}dz$$

$$= \int_{C(\text{anti-Clock})} \frac{f(z)}{z - z_o} dz + \int_a \frac{f(z)}{z - z_o} dz + \int_{C_1(\text{Clockwise})} \frac{f(z)}{z - z_o} dz + \int_d^b \frac{f(z)}{z - z_o} dz = 0$$

But at limiting conditions $a \to b$ and $c \to d$ (Since originally both C and C_1 are closed) we basically have $\int_{d}^{b} \frac{f(z)}{z-z_0} dz = -\int_{b}^{d} \frac{f(z)}{z-z_0} dz = -\int_{a}^{c} \frac{f(z)}{z-z_0} dz$

That is $\int_{a,z-z_0}^{c} dz + \int_d^b \frac{f(z)}{z-z_0} dz = 0$. Hence from above equation we finally get

$$\int_{C(\text{anti-Clock})} \frac{f(z)}{z-z_0} dz + \int_{C_1(\text{Clockwise})} \frac{f(z)}{z-z_0} dz = 0 ----- (1)$$

But to find $\int_{C_1} \frac{f(z)}{z-z_0} dz$ we have the equation of the circular contour C_1 as $C_1: |z - z_0| = r$

Thus we have $\,z-z_o^{}=\,re^{i\theta}\Rightarrow dz^{}=\,ire^{i\theta}d\theta$. Thus we get

$$\int_{C_1} \frac{f(z)}{z - z_0} dz = \int_{C_1} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta = i \int_{C_1} f(z_0 + re^{i\theta}) d\theta \quad \text{ where } \quad r \to 0$$

Hence
$$\int_{C_1} \frac{f(z)}{z - z_0} dz = i \int_{C_1} f(z_0) d\theta = i \cdot f(z_0) \int_{C_1} d\theta = i \cdot f(z_0) \int_0^{2\pi} d\theta = 2\pi i f(z_0)$$

Thus we have from above equation (1)

$$\int_{C(anti-Clock)} \frac{f(z)}{z-z_o} dz = -\int_{C_1(Clockwise)} \frac{f(z)}{z-z_o} dz = \int_{C_1(anti-Clock)} \frac{f(z)}{z-z_o} dz = 2\pi i. f(z_o)$$

Thus the contour integration over C is just replaced by the contour integration over C_1 when both are taken in the same sense. Hence in general we get

$$\int_{C} \frac{f(z)}{z-z_{0}} dz = 2\pi i. f(z_{0})$$
This is Cauchy's 2nd Integral Theorem.