Depression at the Free End of a Light Cantilever for the Loading at that Free

 End:Here 'Cantilever' means a metallic bar of uniform cross section which is made clamped at a rigid support and the other free end is made loaded. Thus the depression of that loaded end will occur for the bending of that bar.

If G be the internal bending moment developed within this bent bar for the loading of its free end by the weight W then we have in equilibrium for the initial length L of this light
 cantilever,

$$
\begin{equation*}
\mathbf{G}=\frac{\mathrm{Y}}{\mathrm{R}} \mathrm{Ak}^{2}=\mathrm{W}(\mathrm{~L}-\mathrm{x}) \tag{1}
\end{equation*}
$$

Here we have for any point P on that bent cantilever, the radius of curvature of this bent cantileverat that point P will be

$$
\mathrm{R}=\frac{\left(1+\mathrm{y}_{1}^{2}\right)^{3 / 2}}{\mathrm{y}_{2}} \approx \frac{1}{\mathrm{y}_{2}}
$$

where $y_{1}=\frac{d y}{d x}$ and $y_{2}=\frac{d^{2} y}{d x^{2}}$ and for small depression δ the slope $y_{1}=\frac{d y}{d x}=\tan \theta$ at the point P of this bent cantilever is negligible. Thus we have from equation (1)

$$
Y_{A k} \frac{d^{2} y}{d x^{2}}=W(L-x) \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{W}{Y_{A k}^{2}}(L-x)
$$

Integrating both sides we get $\frac{d y}{d x}=\frac{w}{\mathrm{YAk}^{2}}\left(\mathrm{Lx}-\frac{\mathrm{x}^{2}}{2}\right)+\mathrm{C}_{1}$
But at $x=0, \frac{d y}{d x}=0$ i. e. $C_{1}=0$ and then $\frac{d y}{d x}=\frac{w}{\mathrm{YAk}^{2}}\left(L x-\frac{x^{2}}{2}\right)$ Again integrating both sides we get $y=\frac{w}{Y_{A k^{2}}}\left(L \frac{x^{2}}{2}-\frac{x^{3}}{6}\right)+C_{2}$. Also at $x=0, y=0$ i. e. $C_{2}=0$

Thus we get $y=\frac{w}{\mathrm{YAk}^{2}}\left(\mathrm{~L} \frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{3}}{6}\right)$ and since from figure, at $\mathrm{x}=\mathrm{L}, \mathrm{y}=\delta$ we get the depression at the free loaded end of the cantilever
$y(x=L)=\delta=\frac{w}{\mathrm{YAk}^{2}}\left(\frac{\mathrm{~L}^{3}}{2}-\frac{\mathrm{L}^{3}}{6}\right)=\frac{\mathrm{WL}^{3}}{3 \mathrm{YAk}^{2}} \quad$ This is the depression at the free loaded end of a light cantilever.
[NB: The radius of curvature at any portion on a curve is defined by the change of arc length due to unit change of slope angle. Here as shown in figure we

have $R=\frac{d s}{d \alpha}$. We have from figure $\tan \alpha=$ slope of curve $=\frac{d y}{d x}$
We get $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d \alpha}(\tan \alpha) \cdot \frac{d \alpha}{d x}=\operatorname{Sec}^{2} \alpha \cdot \frac{d \alpha}{d s} \cdot \frac{d s}{d x}$
So we get $\frac{d^{2} y}{d x^{2}}=\operatorname{Sec}^{2} \alpha \cdot \operatorname{Sec} \alpha .\left(\frac{1}{R}\right)$ and then $\frac{d^{2} y}{d x^{2}}=\operatorname{Sec}^{3} \alpha \cdot\left(\frac{1}{R}\right)=\left(\operatorname{Sec}^{2} \alpha\right)^{\frac{3}{2}} \cdot\left(\frac{1}{R}\right)$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx} \mathrm{x}^{2}}=\left(1+\tan ^{2} \alpha\right)^{\frac{3}{2}}\left(\frac{1}{\mathrm{R}}\right)=\left\{1+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\right\}^{\frac{3}{2}} .\left(\frac{1}{\mathrm{R}}\right)$ Finally we get $\left.\quad R=\frac{\left(1+\mathrm{y}_{1}^{2}\right)^{3 / 2}}{\mathrm{y}_{2}}\right]$

