Depression at the Free End of a Light Cantilever for the Loading at that Free
End:
Here ‘Cantilever’ means a metallic bar of uniform cross section which is made clamped at

a rigid support and the other free end is made loaded. Thus the depression of that loaded
end will occur for the bending of that bar.

If G be the internal bending moment developed within this bent bar for the loading of its
free end by the weight W then we have in equilibrium for the initial length L of this light

cantilever,
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where y; = d—i and y, = ﬁ and fo a *\n 8 the slope y; = d—i = tan0 at
the point P of this bent cantilever is nggligible. Thus we'have from equation (1)
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depression at the free loaded end of the cantilever
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depression at the free loaded end of a light cantilever.

This is the

[NB: The radius of curvature at any portion on a curve
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is defined by the change of arc length due to unit ’

change of slope angle. Here as shown in figure we
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have R = 7o We have from figure tana = slope of curve = d—i
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