Symmetries and Conservation Laws in Lagrangian Dynamics:

a) Conservation of Linear Momentum:

Here we now consider the translational motion of a conservative system and since g; is
the generalized coordinate, we take dq; as generalized displacement of that translational

motion. As we have for conservative system, the kinetic energyTiT(qi), we

have (a—T) = 0. Again since the potential energy of that system V + V(' we have
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translational motion, we have J1; = ndq; ing case 6q; > 0 , we get
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total effective force along the direction i motion.

Again for this N particle system in motion, since the total kinetic energy of
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ntioned earlier that p; = Q;, we get a(n.p) = n.F and this

This is conservation of linear momentum as obtained in Lagrangian dynamics.



b) Conservation of Angular Momentum:

We consider the rotation of a system about an axis in circular path as shown, where the
angular coordinate is taken as the generalized coordinate.

As we see from figure, the infinitesimal change of generalized

coordinate q; corresponds to an infinitesimal rotation of a vector 5o ':- dgj -
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Again in this case the generalized mom
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Again we have from earlier diseussian of conservative system p; = Q; and then we get
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This is conserva ngular momentum in rotational dynamics as obtained in
Lagrangian

¢) Co tio*of Energy:

Here si for conservative system, kinetic energy is not function of generalized

coordinates and potential energy not function of generalized velocity, we have for
constrained motion of such conservative system with constraint of motion not function of
time explicitly, the Lagrangian of the system L = L(q;,q;)
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Finally we get
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Thisgives —[L—Xj_1(q;p;)] =0 = L—Xj_4(q;p;) = Constant
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But since the constraint of the system is not function of time explicitly i
the N particle system does not depend on time explicitly, we have
that conservative system is a homogeneous function of generalized

here we have ¥|_ 1q, P =2T = ¥{_4(q;p;) = 2T
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Thus from above equation we get 2T — L 2 Const. = (T-V)=T+V=
Const. — this is energy conservation.
Basically the symmetry means invariance of cert operty of the system under a given
operation. More clearly if a functionyindicat perty of the system does not
change under some operation then the systemjis said\to have symmetry with respect to
that operation.
As for example, consider the r ion linder about its own axis. For this rotation,
the shape of that cylinder not Thus the cylinder is said to have rotational
symmetry about its own axis.
Similar to that we ne av®a close system for which Lagrangian of the system does

— translation in space and rotation in space and also this

. ... OL
pend on time explicitly i.e. P 0

Let us our requirement.

a) If Lag ian of the system does not depend on time explicitly then the constraints will
also be independent of time explicitly and in that case as kinetic energy of the system will
be homogeneous function of generalized velocity in degree 2, we have from our previous

discussion, Y./_ 1q, = = 2T = ¥{_,(q;p;) = 2T and since Y{_,(¢;p;) —L = Constant
we finally have
2T — L = Const. = 2T — (T — V) = T + V = Const. — this is energy conservation. For

this energy conservation due to Lagrangian of the system independent of time explicitly, it
is called Homogeneity of time



b) Since the system is taken as a close system, the net effective external force on it will be
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zero and in that case the generalized force Q= N ,F. i = 0. For this case
j
conservation of linear momentum will occur and the Lagrangian of that close system will
remain invariant in translational motion and system will have translational symmetry.

This is called Homogeneity of space.

c) If Lagrangian of a close system remain invariant under small rotation of the coordinate
frame with respect to any arbitrary axis of rotation then it is called isotropy of space and

in this case total effective torque on rotating system will be zero and the related

rotational coordinate will be cyclic in Lagrangian of the system. Such isot f space
gives conservation of angular momentum.

These are the symmetries of a close system in respect to the invari
the system under relevant operations.



