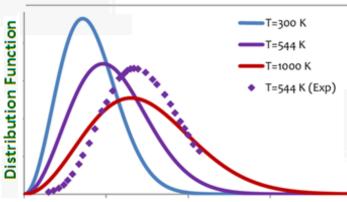
Kinetic Theory of Gas

1. Maxwell's Law of Velocity Distribution and Velocity Distribution Equation:

According to Maxwell's law, for Brownian motion of gas molecules within a close container,



although different molecules has different velocity but a number of molecule may have same velocity and maximum number of molecules will possess a certain velocity, called most probable velocity. This is Maxwell's velocity distribution law.

Here by using probabilistic concept, Maxwell showed mathematically that if dn_c be the number of molecules having velocity between c and c + dc then $dn_c = 4\pi na^3 e^{-bc^2} c^2 dc$ where n = no of molecule per unit volume, a and b are Maxwell's constant and also it can be shown mathematically that $a = \sqrt{\frac{b}{\pi}} = \sqrt{\frac{m}{2\pi kT}}$ and $b = \frac{m}{2kT}$ where symbols has their usual meanings.

2. Average and RMS Velocity of Gas Molecules:

Now we consider that for a given gaseous system, each of n_1 number of molecules has velocity c_1 , each of n_2 number of molecules has velocity c_2 , each of n_3 number of molecules has velocity c_3 ,etc. Thus the average velocity of the gas molecule will be

$$\frac{n_1c_1 + n_2c_2 + n_3c_3 + \dots \dots}{n} = \frac{\lim_{r \to \infty} \sum_{p=0}^r [n_pc_p]}{n} = \frac{1}{n} \int_{c=0}^{\infty} c \, dn_c \, .$$

But by applying Maxwell's velocity distribution formula we can solve this integration by using Gamma function technique and then finally we get average velocity of the gas molecule as

 $\overline{c} = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}$. Similarly the rms velocity of gas molecules will be

$$\mathbf{c}_{rms} = \sqrt{\overline{\mathbf{c}^2}} = \sqrt{\frac{n_1 c_1^2 + n_2 c_2^2 + n_3 c_3^2 + \cdots ...}{n}} = \sqrt{\frac{\lim_{r \to \infty} \sum_{p=0}^r [n_p c_p^2]}{n}} = \sqrt{\frac{1}{n} \int_{c=0}^{\infty} \mathbf{c}^2 \, \mathbf{dn}_c}.$$

And by the same manner of solving this integration we finally get rms velocity of gas molecules as $c_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$.

3. Relation between RMS Velocities of Gas Molecules with Density of Gas:

Since for gas molecules its rms velocity is given by $c_{rms} = \sqrt{\frac{3RT}{M}}$ then for one mole of ideal gas we can have $c_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3PV}{M}} = \sqrt{\frac{3P}{V}} = \sqrt{\frac{3P}{\rho}} \Rightarrow c_{rms} \propto \frac{1}{\sqrt{\rho}}$. Thus rms velocity of gas molecule during its Brownian motion is inversely proportional to the square root of density of that given gas.