Kinetic Theory of Gas

1. Maxwell’s Law of Velocity Distribution and Velocity Distribution Equation:

According to Maxwell’s law, for Brownian motion of gas molecules within a close container,
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Maxwell’s velocity distribution formula we can solve this integration by using
Gamma ion technique and then finally we get average velocity of the gas molecule as
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And by the same manner of solving this integration we finally get rms velocity of gas
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3. Relation between RMS Velocities of Gas Molecules with Density of Gas:
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Since for gas molecules its rms velocity is given by ¢, ,,s = v then for one mole of ideal

gas we can have ¢, = ’3RT = F’PV = 2= o « —=. Thu
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