A few samples of Physics Formula on Class XI+Xll Combined
Syllabus in +2 Levels:

On XI - Syllabus:

1. Displacement of a moving particle S = AF = £ - £1 = Change in Position.
2. Distance traversed by the moving particle d = Length of the total path traversed

3. The relation between the magnitude of displacement and distance d ing
particle is given by |S| < d

4. Velocity of a moving particle is the rate of displacement or the€te of clange of position and

o . . oS _ AF
it is mathematically givenby v = il ®

5. Speed of a moving particle is the distance travelledyi ittime. This is given by v, = ﬁ
where v, = |V|and Vy]min = |V

6. Instantaneous velocity v = lim,,_,, Ar_ where |V = Slope of position-time graph

7. Acceleration of an accelerated% ated by the time rate of change of velocity and

is givenby a = av
g y a= 4
AV dV

8. Instantaneous acceleration a L S limy_,o ~ @ where |3 | = Slope of velocity-time graph

9. Average velo

S1 Sy 4S54 oo B ¥S _ Total Displacement AF
Aty + At, + Atg + ... ... YAt Total Time YAt
_ Total Change of Position
- Total Time
__ Total Distance Traversed E
10. Average speed v, |,y = Total Time = Sm

XAV _ Total Change of Velocity
- YAt - Total Time Elapsed

11. Average acceleration a],,

12. Magnitude of total area of velocity-time graph = | f:lz \7dt| = |AF| = |§]



= Magnitude of total displacement = distance travelled in one dimension
13. Magnitude of total area of acceleration-time graph

t
f adt
t

1

= |AV| = magnitude of total change of velocity

14. Relative Velocity V12 = V1-Vy ; Va1 = V2 —V1 ; V12 = - Var ; where | Va2 |= | V21| = Vieparive and
we also have
— |y — |y — 2 2
Vrelative = |V12| = V21| = \/Vl + v5y — 2vyv,Cosa
15. [Vyelative] max = V4 + Vo, for viand vz in opposite direction, [V cjativel mi ~W, for V2

in same direction.

16. Relative Acceleration a1z = as-a> ; d21 = az —a1 ; a1z = - az1 ; Wher 5@ = |21 | = arerative
and we also have ®

— |= — |a — 2
Arelative = |A12] = [az1] = —2a;a,Cosa
17. [a elative] max = @1 + a, for ajand azi i ion, [a,cjative] mn = @1 ~a, for ajand a;
in same direction.
18. For translational motion with tnifor ration a in one dim we have v=u+at,s = ut+

Yeat?, v2 =u? + 2as.

19. Distance traversed in t% time in‘one dimensionis S; = ut + %a(Zt -1)

20. For translatio ith non uniform acceleration a (t) we have v(t) = u+
tz —
ftl a(tdt
21. For metion,in 2 dimension, velocity vV = vxi + v,j, acceleration a = a.i + a,j
_dx _dy _dz _ d2x _ d2y _ d?z
here v, = i, Sl (e and a, = 2y T gz T

22. For motion in 3 dimension, velocity V = v« + v,j + v;k, acceleration a = a,i +aj + a;k

wherev, =% v =% y — 9 gpgq = 8% 5 Ly, _ 4%
X_dt’y_dt’z_dt X_dtZ’y_dtZ' Z_dtZ
. . . . . d
23. For motion of particle in curved path, the radial component of velocity v, =d—:, the

. . de
transverse or cross radial component of velocity vy = ro



24. For motion of particle in curved path, the radial component of acceleration,

d2r de\ 2 . .
ar:ﬁ_r(ﬁ) the transverse or cross radial component of acceleration,

__d%e dr\ (de
a0 = rgz +2(5) (3)
25. For motion of particle in circular path, the tangential acceleration a; = % , the normal

2
acceleration a, = VF where p is the radius of curvature at the position of particle on the curved

path.

26. For a moving particle, its instantaneous velocity cannot be zero but its avera city may
be zero.

27. For a moving particle its instantaneous velocity may change its ditectionybutyin a“€ertain
interval of time its average velocity will have certain direction for that time'in

28. For two dimensional motion of a particle it can have onegdi al®acceleration. As for
example it is true for projectile motion. g

29. For circular motion of a particle which is a two_dimensional motion, both the velocity and
acceleration will be non uniform, but only for uniformigircularimotion, the speed of that rotating
particle will be uniform. So in this case ofwni motion of the particle we should have

d , - dv
S(19) = 0 where |a| %0

30. For a uniformly accelerated particle eleration a, if u be the initial velocity and v be
the final velocity of that movinggparticle in rtain time interval At then the average velocity of
a%v avy = — = oy
At 2

that particle in that time interv

31. For uniformly accel arfiele its position — time graph will be parabolic.

icle“iflits acceleration increases or decreases with time at a constant rate
graph for that moving particle will be parabolic with slope of the graph
ing or decreasing with time.

motion with velocity of projection u and angle of projection a, if projectile be

2Qin2
thrown from horizontal ground then i) Maximum height reached H = %;a ii) Time of flight

u?Sin2a

. 2
2uSin® i) Range of projectile motion R = . Rmax= ug ata = E iv) Equation

T =

of the locus of path traversed by the projectile y = ax + bx? = (tana)x + (— " foszm)x2

34. Projectile be thrown horizontally from a certain height h then basic equations of motion are



1 ) 2h 2h
h=-gT“"=T= |—, R=uT=u|—
2 g g

35. Projectile be thrown at an angle o from a certain height h in upward sense then basic
equations of motion are h = —uSina. T + %gT2 ,R=uCosa.T

36. Projectile be thrown at an angle o from a certain height h in downward sense then basic
equations of motion are h = uSina. T + % gT? R = uCosa.T

37. Projectile be thrown at an angle o with respect to the horizontal direction in

from the bottom of an inclined surface having inclination 6 then i) Time
2uSin(a—0)
gCosO

ii) Range of projectile motion on inclined surface

u?[Sin(2a — 6) — Sin@]

gCos20 Lomax
38. Projectile be thrown at an angle o with respect t orizontal direction in downward
sense from the top of an inclined surfage havinghi a 0 then i) Time of flight T =
2uSin(a+0) .
~oto® ii) Range of projectile motion on in€line

R = u?[Sin(2a + 0) 2[1 + Sin0] t(2a+0) = i
B gCos2 gCosZG atlea 2

39. For projectile motion with ve f projection u and angle of projection « , if projectile be
thrown from horizontalygroupd then average velocity for the whole motion will be equal to the
minimum velocity is is given by

2Sin2
u=-s1n a/g

Vav = At T 2uSin(x/g = uCosa = Vpin

40. For projectile motion with velocity of projection u and angle of projection «, if projectile be
thrown from horizontal ground then for its instantaneous velocity v at any instantaneous
position 0 we basically have vCos® = uCosa, vSin0 = uSina — gt

41. When a swimmer wants to cross the river of width d in shortest path then for his own
velocity v and the velocity of the stream of the river u , he should swim at angle 6 with the

direction of the stream when Sin(6 — 90) = % .

d

[v2—u2

In this case the time taken to cross the river by the swimmeris t =



42. When a swimmer wants to cross the river of width d in shortest time, he should swim normal

to the bank of the river at right angles with the direction of stream of the river. In this case the

- : . d
minimum time taken willbe t,;, = .

On XIlI - Syllabus:

1. Charge is the homologous parameter of mass which when associated with a body; the
body is then called charged body. By the help of charge two so called chargedfbodies will

interact with each other electrostatically. The concept of charge is not
for ele

macro body but it is taken as a quantum number which is taken as ze
neutral body and non zero for charged body. Q
Mathematically, this quantum number is given by
®
Q=1+ % (B+S) where I, = Isospin q’ant no, = Baryon no and

S = Strangeness quantum no. \
2. By the theory of charge quantization any amouat of positive or negative charge is the
integer multiple of a fundamental charge n fundamental or basis charge is the
charge of positron or negatron. Thus for this,theory, foriany charge
No ,.— ;
40 = V. je*] = N K&: Y% [e71= N (e).
And also lef] =067 x WO~ ™Coulomb = 4.8 x 1071° esu of charge

We should note this
but there is no th

of‘uantization is only obtained from experimental findings
kground behind it.

theoretica tional charge of negatron or positron.

llyif q; and q;, be two charges having separation r then magnitude of

9192
r2

Coulomb interaction force is |F| = k,

where k, is a proportionality constant, not
universal and basically it depends on the nature of the medium and the system of unit
chosen. And also we observe that

ooy 1 . 1 N |
k, =1 (cgs, airx) = o (cgs, Other medium) = Te (cgs, air) = pp

(SI, Other medium)

Now by taken Sl system and air medium we get the magnitude of Coulomb force



|ﬁ|:F:Lw

yp— where €, is electric permittivity of air or vacuum and also
0

k = ei = €, = Relative permittivity of dielectric constant of the medium and it is 1 for air

18 =9 x 10° Nm?/C? = 1 dyne.cm?/(esu of charge)?
where 1C =3 x 10° esu of charge and 1N = 10°dyne

Again in any medium other than air the magnitude of Coulomb force is |ﬁ| = F=

1 . S
. kqi# and by the rule of vector, we have for air medium in Sl system,
()
0 1 (h(h 4 1 qmz 4 1 q1q2 -
F = +r) = = .T
4 e, (0 =+ 4 g, )=+ 4me, 13

where +ve a - ign
respectively indicates the repulsive and attractive force.

4. The dimension of permittivity is given by [e] = [FFl]][[;Z]] = AT':TL ~ = —3T4A?
®

5. If in electrostatic field, a no of discrete charges be present the e effective Coulomb

force to a given charge Q; for all those charges (q-' j ) will be the vector

sum of the forces between given charge and eac ibution of discrete charges.

So for N no of discrete charges the effeetiv, u orce on that given charge Q; will be
A N 1 Qiq; —)
Fi= Y- rl G (i #])
6. Electrostatics Field Intensity f Poi rge is mathematically given by
Fo L o W oo is positi
E = e, 13 L= where the source charge Q is positive.

®
. - 1 — .
On the other ha ve source charge E = e r%.r . So in general for any
0

source charge

The u

1
3x10%su of carge 30000

this “electric field intensity is N/C or %of chargewhere 1N/C =

dyne/esu of charge

7. On the basis of electrostatics field intensity, the electrostatic field intensity at any field

q1—>

T, and
114_1“E i 1

point for the given discrete charge distribution will be E= yN

similarly for continuous charge distribution, this net field willbe E = — fff pdV &

8. If @ be the flux passing through cross section A of that electrostatics region then
mathematically |E| = % and ¢ = [[E.d$= [[E.fids



9. Electric Dipole and its Characteristics:

a) Dipole moment is given by p = qfand for small dipole, the moment is dp = qdi

b) If a small dipole of dipole moment p be placed in external electrostatic field then the

electrostatic potential energy stored in it willbe U, = —p. E

c) If an electric dipole be placed in external electrostatic field then the moment of couple

acting on it will be G= p X E and the work done by this couple will be

0 0
W= —f Gdo = —f pESin0d6 = pE(1 — Cos0)
0 0

d) For a linear dipole the electrostatic field intensity at any end on p sition x on
. .. . = 1 2px
its axis is given by E|.ndon = ine, 217 n
®
e) For a linear dipole the electrostatic field irftensity at a broad on point on
p —

perpendicular bisector of its axis is given by E]bm n (TP n,
0

f) For a small dipole of dipole moment p, th itu f electrostatic field intensity at
any field point will be |E| = ﬁ r% [3 ]

Vectorically, this dipole field atan tora small dipole is given by

e,

g) For a small dipole h %2 > 12 the electric field intensity at the axial point for

. _ 1 2
that short dipole lendon = i
.. A ape . . 1 P
Similarly, itis a ad on position is given by Elproadon = o
10. Mu otential energy between two coplanar dipoles is given by
P1p
Uy =Uqp = 41116(;3 [cos (8, —0;) — 3 cos 0, cosO,] =
P1P2

prv— [Sin 0, Sin 0, — 2 cos 0, cos0,]
where we have put r,; =r. This is the interaction energy of two coplanar dipoles
separated by a distance r.

P1P2

If the dipoles lie along the same line, ; = 0, = 0 andthen U = Uy, = — P—
0



dsCos® _ dsr¥
r2 13

11. Solid angle subtended by the area ds at any positionris dw =

12. By Gauss’s law of Electrostatics, the total electrostatics flux over a closed region will

be ¢= [[Ed§= 612 Q =Net charge enclosed by that closed region.

This is because of the fact that mathematically we should have

o= [[Bas= [[ g 5 s = g Yo [[ % s e f e
__t ZQ.4H=1ZQ-
4Tte, €

This is Gauss’s law of electrostatics. Differential form of this Ga aw,, is by
P 1

— = ‘
13. We have differential form of Gauss’s law VgE ={p. It isha basic equation in
e e density at that point.

electrostatics. It relates electric field at a point wi \
. - — . 1 1 .
Since E = —V¢, Equation V .E = — p may be
0

re
-_r°
60.

0, it reduces to VZ¢ = 0 this is known as

V.(-Vo) =

This is known as Poisson’s equation. w~

Laplace’s equation

14. Electrostatics field intensity,at aycertain normal distance from infinite linear uniform
1 2 1 2A

2me, X 4me, X

charge distribution: F ar d‘nsuy of charge A , itis givenby E =

15. Electrostati sity at a point close to the uniformly charged infinite plane

sheet: For ity of charge , itis given by E = 21

€o

16.

surface

ic Field Intensity at a point close to a Charged Conducting Surface: For
ity of charge , itis givenby E = 63

17. For a charged Spherical Shell of radius ‘a’, the magnitude of electrostatics field
intensity at any point at a distance r from the center of the shell is given by

1 Q

E]r>a = Feo 2 E]r=a =

2 and Elycu = 0

4me, a2

18. For a charged solid sphere of radius ‘a’, the magnitude of electrostatics field intensity
at any point at a distance r from the center of the shell is given by



1 Q 1 1 aQr
E]r>a T 4me, ¥Z ! E]rza T 4me, "a? and E]r<a T 4me, a3

19. Electrostatic Potential at any field point due to a single source charge is given by
V= +

41e,
be erg/ esu of charge or esu of potential where 1 Volt = 1)/ 1C = 10’ erg / (3 x 10° esu
of charge ) = (1/300) esu of potential Or, 1 esu of potential = 300 Volt

20. The electrostatic field and potential at any distance r from a source charge are
Q

respectively E =

= and in this case we can write down
4 4-1'te0
dv Q d 1 1 _1
T
dr 4me, dr r 41e, r2 411(—:0

And the potential field relation is E = — d—r and EdrCosn =

f E.df. But the actual vector relation between ele‘ctro@a’d potential at any

field point is given by E= - V(V)

ER. 1
21. Electrostatic Potential Energy for two Static C W = foo F.dr = e .%
av

22. Relation between Electrostatic Forc Energy is E = — 5 we have
d(qv

qE = — (dir) or F= ——

It is the relation betwee lectkos force and electrostatic potential energy.

Vectorically this relation is actually given by F= — V(U) .

23. In electrostatics io’ if we consider such an imaginary surface such that the

electrostatic poténti and every point on that surface will be the same then that

imaginary sur called equipotential surface.

th and B are two close points on that surface having respective position
+ df with respect to an arbitrarily chosen origin O. Since they are

V, = Vg and for these two close points we should have dV = 0

Or —Edr = Edr Cost = E.df = 0. So here we see that the two vectors E and df are
mutually perpendicular to each other.

So the basic characteristics of the equipotential surface is that the electric field intensity
at any point of it is perpendicular to that surface at that point and the work done in
bringing any charge along that surface will be zero.



24. For electrostatic potential at any point for Discrete or Continuous Charge Distribution

we have from the principle of superposition, the electrostatic potential at any field point
. . T . _yvN 1 a_ 1 N Qi
for the given discrete charge distribution will be V = Zi=1_41'[eo o ame Yi=1 .

Again for the continuous charge distribution this potential will be

V‘fff 1 pdv_ 1 ﬁ’ pdV
B 4me,” T  4me, r

25. For superposition principle in respect of Electrostatics Potential, the potential at any

point is the sum of the potential due to individual charges. So usin
1 q
4mey |F-1|

distributions.

and this principle it is possible to calculate potential due to“arbitre “ ge

We can write for potential due volume, surface and line char istributions as

. i ®
e = Fleo Jy % (Volume chargeydistribution)
¢(r) = 41:6 Js % (Surfacﬁ tribution)
0 -r/
o1 AEDdL . .
&) = . J| 7= (Lineicharge disgribution)
26. For any small dipole the potential ance r from that dipole will be
1 dp.r
Vs, 0) = . :
) 4me, 13

e magnitude of electric field intensity for that small dipole
jial and transverse components E, and E; we mathematically

1 2dp.Cos6 10V(r.0 1 dp.Sin6
_ p and Eg = —- re) _ p

4me, 13 r 00 4me, 13

So magnitude of field intensity due to small dipole will be

. 1 dp.
|E| = /E$+E2= .r—E\/3C0529+1

4me,

Also it can be shown that the vector form of this field intensity is E= ﬁ. (S(drps'r)r - (:—g)
27. For Electrostatic Field and Potential due to a Uniformly Charged Ring, these are

1 Adl 1 Q
J

41€(

respectively given by ¢ = TnE  tmes Joag



And E= Vo= -gi= L _ &

= . X
dx  4mey (aZ+x2)3/2

28. For Electrostatic Field and Potential due to a Uniformly Charged Disc the potential is
given by

¢=%[\/a2+x2—x]forx>0and%[\/a2+x2+x]forx<0 and the
0 0
. . . . —->__—> __"d_q)—i _ X A
electrostatics field is given by E = —V¢ = xdx—Zeo 1 —\/m]xforx>0
= o
andE=———|(1+ Xforx <0

X
2¢y va? + x2

29. For Electrostatic Field Intensity due to a Uniformly Linear Distri %o arge, It is
®
2°

given by
= XA (+01c0s0d0 XA -
E= 4meg f—91 x  4mepx .2 519, ‘neo if%+
X and we get approximately

If the point P is far away from the line charge,t
= R 2AL 2 Q
E = — = =
4mey - x2 4mey  x2
For a line charge of infinite exten or ints) very close to the line charge
22 XA

L > xor0; =mn/2 and we ca ite

0o X 2mepx

30. For Electrostatic Potential at se oint for a Charged Sphere, these are given by

¢(r)=i€0%forr2 and =43€0 E—%] forr<a

®
31. An importa ce of Gauss’s law concerns the equilibrium of a charged
particle in an trostatic field. It is shown that a freely movable charge cannot exist in
stable equilibri ee space under the influence of electrostatic fields alone. This fact
is often(gi me Earnshaw’s theorem.
32. Eq ntial surfaces and field lines of a dipole: Equipotential surfaces are

everywhere perpendicular to the lines of force. Traces of Equipotential surfaces in the
yz —plane can be obtained as follows. The potential at any point (1, 0) is

1 pcosO
o(r,0) = —

4mtey, r?

Therefore, for an Equipotential line, r(0) = Avcos 0



where A = ,/p/4meygd = constant. This equation gives a family of Equipotential lines,
where A is different for different lines.

33. Force on a dipole placed in an electric field is given bny = (f)’.V)E. It is a general
expression valid for both uniform and non-uniform field.

o 2
34. Basically the force on unit area or electrostatic pressure is F = ;Tﬁ . Obviously the
0

pressure acts in the outward direction irrespective of the sign of c.

The pressure can also be expressed in terms of the field given by equation E n atthe

conductor surface P = 2 eoE2

35. Electrostatic Energy of an Assembly of Point Charges: For charges the

expression for U can also be written as U = —Z 12:\'= whe the factor e

j#i
included to avoid double counting of each pair. Note'that t erms with j =1 are

excluded because it represents self-terms.

The electrostatic energy U can also be written_in teems of the electrostatic potential. Thus,

U= —Z ., qid; where, ¢; = YL otential at the location of the ith

charge due to all other charges exce

36. Electrostatic Energy in Tesms i istribution is U =% fv p(¥)¢ () dV. Now

using the differential form of ss’slaw, V.D = p, we can write U = % fv (V .B) ¢ dv

Using the vector ident ¢3) = V(b D+ ()] (V .ﬁ)

s
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\ . . 1 — - 1 - = .
The sur egral in equation U = - ¢, (¢D) .dS + 5 J, E .D dV goes down like 1/r.
Thus, as urface S is expanded to include all of space the surface integral vanishes and

we are left with U == | E.DdV
2 Ya

1l space

37. Electrostatic Self-Energy of a Uniformly Charged Sphere is

anp? ra_4 4mp?  as 1 3Q2 4 3 .
U=— | r*dr = == .— wher = -ma°’p is the total char n th
) e 5 " ne " 5a ere Q = ma’p is the total charge on the

sphere.



38. For Classical radius of an electron, suppose we consider the electron as a uniformly
charged sphere of radius r, containing a total charge - e.

. . . 3e?
The energy required to assemble this sphere of chargeis U = i
0 0
3e? 2 3e?
But we have ——=mc* Oor rg=——
4mey ~5rg 0 ™ 20meomc?
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