Magnetic Effect of Steady Current

1. Biot — Savart Law or Laplace’s Law:

In general a static charge creates electrostatics field at any point where as a moving charge or
current flow produces magnetic field or magnetic induction in the neighbor region. The
magnitude and direction of the magnetic field or magnetic induction can be determined by
this Biot-Savart law or Laplace’s law.
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Thus by the rule of vector this magnetic induction will be, since
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Magnetic induction at that field point will be _B)=:—1‘; igﬁ —this is mathematical

representation of Biot-Savart law or Laplace’s law.

This integration is called Laplace’s Integral which gives both direction and magnitude of
magnetic induction at any neighbor point of a current carrying conductor.
On the other hand the magnetic field intensity at that field p will be
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2. Application of Biot-Savart Law:

a) To find Magnetic Induction at a certain normal di %@m straight finite

current carrying conductor: ¢
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We should note that for very long or infinite straight current carrying conductor,
0; =0 and 6; —  and then in that case the magnitude of magnetic induction at normal
distance x from that infinite straight current carrying conductor will be
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b) To Find Magnetic Induction at an axial point of a Circular Current Carrying
Conductor:

Now we consider a circular current carrying conductor having radius a which carries current i.
For this conductor, we have to find the magnetic induction at an axial point at a distance x
from the center of the conductor.

As shown in figure, the effective magnetic induction at that axial point Pgdue to two
diametrically opposite segments dl will be 2dBSing.
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